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) Most of the basic logic in our TDFD RCS code was in place at the begin- D
o ning of this quarter. Consequently, we have now directed our primary ///——‘\\\.;~
concern to LTy

, A 1) Improving the computer efficiency of the code.

: - 2) Making changes which lead to increased accuracy.

‘; 3) Examining a second canonical problem, a thin dielectric strip, to =
verify further the code accuracy. ;?
- 4)  Making the code more user-friendly. b
i 5) Documenting the TDFD RCS code. E
.- T
. By way of Item 2 above, we have recomputed the RCS of a perfectly
conducting rod .5 m in radius, bare and covered by a damper .5 m thick. The
damper 1is characterized as e€/eq = p/pig =1, 0 = eo%/u = 4 x 10-3. These
values were selected to give a skin depth on the order of damper thickness }:
'. at the frequencies (50 - 500 MHz) for which the calculations were run. The -
R TDFD code wutilized square cells 4 cm on a side or 25 cells to a cylinder ?3
diameter. :&-
g
While our TDFD code only treats the TM case, we are able to simulate TE N
. problems by wuse of duality. In particular, the above-described case was ~§
rerun with the cylinder perfectly magnetically conducting (o* = =, o = 0), E::
. and the damper unchanged. The RCS obtained in this manner for TM illumina- {5
SN tion is the same as one would obtain for TE illumination of an ordinary >
electrically conducting rod. -
. -
Figures 1 and 2 show our TDFD RCS calculations for the damped and :E
r- undamped electrically conducting rod. Overlaid on these figures are 2
L

analytic solutions to the same problem as determined by expansion in

-, -
(N I

»
1)
[N
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cylindrical harmonics (see the previous quarterly report for details of the

harmonic expansion). These results should be compared with Figures 1 and 3
of the previous quarterly report. As one can see, the frequency-domain
ripple which had been present on the response of the (amped rod is now gone.
This ripple had occurred because the outer boundary of the problem space was
somevhat reflective. Hence, the true solution was "beating"” with a
coherent, but specious, echo. We have now found a way to implement a much

less reflective outer boundary.

(Unlike 3D problems, we have empirically learned that 2D outer bound-

aries are least reflective if a pure radiating condition,

f(x. t) - g(t - xr/e)//r

is wused without a damper inside the boundary. In conjunction with this
outer boundary, the 2D code should not be run with At at the Courant limit,
as/(J2c)y, but at As/(2c). This empirically discovered combination gives
less outer-boundary reflection than an impedance boundary, a damped bound-

-1/2

ary, a pure r boundary, a Mur boundary, or any other mixture of the

above.)

Figures 3 and 4 show our TDFD RCS calculation for the TE simulation.
Again, these results are overlaid with the cylindrical-harmonic solution.
These curves correspond to Figures 2 and 4 of the previous quarterly report.

Again, the new results may be seen tc be much "cleaner".

This improvement was obtained using the same techniques as the TM case,
but with an additional twist. In retrospect, it is obvious that a perfectly
conducting infinite rod illuminated by a unipolar EMP polarized along the
rod axis will carry a d.c. response forever. If the EMP calculation of this
response 1is stopped suddenly at t,, the frequency transform of the result
will be the true transform frequency-convolved with sin(wty/2)/(wty/2). Ve

are now running the TE-like TDFD <calculation long enough that 2/t, is
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smaller than any angular frequency of interest and then turning the code off

"softly", say over 425 cycles.

Additionally, we now have results for scattering from dielectric
cylinders .5 m in radius and characterized by e¢/¢, = 2 or 9. (There is a
fundamental difference between these two cases. At ¢ = 2¢,, the optically
shortest path from one side of the cylinder to the other is through the
diameter. At ¢ = 9¢4, it is around the circumference.) Figures 5-7 show
overlays of these calculations and the harmonic expansion. It may be seen
that the overlays begin to diverge above 300 MHz, especially for the ¢ = 9

case. This corresponds to about 8 cells per wavelength.

Consequently, the dielectric cylinder calculations were rerun with As
reduced from 4 cm to 2 cm. Figures 8-10 show the overlays based on the
reduced As. These new results are considerably improved, especially at the

higher frequencies.

It is our belief that, although great improvement has been achieved
over the past quarter, we are still quite far from achieving the ultimate
accuracy TDFD can provide. We especially hold this opinion with respect to
eliminating the broad frequency-domain ripple appearing on our latest cal-

culations for the bare-rod TE simulation.

Figures 11 and 12 present overlays for the second canonical problem,
Item 3, TM scattering off a dielectric strip .025 m thick, 2 m wide, and
characterized by ¢ = 0, €, = 2. This data represents the monostatic RCS for
a 45° angle of illumination with respect to the strip’'s major faces. The
TDFD curves in these figures are based on 4 cm square cells. At the higher
frequencies, 2 cm cells would doubtless improve the code-code agreement.
The frequency-domain calculation is not strictly canonical, but is actually
a modified Galerkin solution with three complex waves included to represent
the strip behavior in the width direction. This frequency-domain solution

is due to Richmond, and was brought to our attention by Dr. Stovall.

With respect to Item 4, we have now implemented some user-friendly

graphics so the worker has a visual representation of the problem being
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solved. For example, Figure 13 illustrates the cell occupancy by conductor

or damper for the damped electrically conducting rod upon which Figures 1

and 2 are based.

Lastly, there 1is 1Item 5, the matter of TDFD RCS code documentation.

The remaining pages of this report constitute our first draft of this task.
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Architecture of the Time-Domain Finite-Difference RCS Code

Equations to be Solved

We assume in this study that electromagnetically linear conditions
prevail. Then the total field can be separated into an incident field
(which would be the field in the absence of the scatterer) and a scattered

field (the field modification caused by the scatterer’s presence):

+ (Escat, H

(ET T) _ (Einc’ Hinc)

scat
)

(1)

Under the linearity assumption, both the incident and the scattered fields

individually satisfy Maxwell's equations.

*
If some background dissipation (ab, ab) is present, the incident fields

will obey
aHinc
VxBTS - g 5 - o™ (2)
aEinc
VX BT = e~ + B (3)

In the presence of an anisotropic scatterer with frequency dependent

properties, the total fields conform to
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3E" 3ET(t")

Tft
VXxH = [ EE_ + g, * E + ) K(t-t') - ——527—— dt’ + Jf (5)

Subtraction of the first pair of equations from the second leaves us with

the version of Maxwell’s equations obeyed by the scattered fields:

aHscat scat(

t 8H t')
scat = * scat *ooeN . — ,
v E = - P, ot - % H N Im K (e-t") at’ de
inc inc .,
dH * inc It * R Eg___ﬁf_l '
- (H - l.u'o) * it - (Qo - _l_ab) ¢ _H_ - _Q}__S (t't ) * at’ dt
*
o (6)
scat scat
3E t JdE (e")
v ﬂscat — e - P + g6 Escat + Im E(C-t') . ac de’
gpinc . t aginc(t')
+ (Ew - Iey) - 3 + (go - Lab) « E + _mg(t-c') . ac’ dc’
. (7

It 1is convenient to represent the inhomogeneous parts (or incident

parts) of eqs. (6) and (7) as

(0TF) = - Lol (W) + [3}) + [V x ES°%F)
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+ oy = o) W) 4 [0} - op)(uinC
b Linc * scat
[ e i ey jaer v (03] 4 (v x £590Y (8)
7] = - (0ol ES) + (3] - (v x 15°%F) -
+ ley - B + [0 - 0, 1[EM™]
t e t
+ ok P ey jaer 4 [3¢] - [V x B%°%F) (9

Thus, [HS] and [ES] become

.. . t ..
151 = - () - Mty - [ Ay it ey ae (10)

.. . t ..
(E5) = - (1) - RI(E™C) - [ face-r) (ETC(er)1ae (11)

In the last pair of equations, we have defined

(") = (o) g~ bo] (12)
(R*) = (03] o5 o) (13)
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%,
(4") = [o0] (K] (14) :

:‘m

+
W -1 e
\ (r] = [oo) “le, - €o] (15) R
oo -1 =
.n- [R] = [00] [0,- - ab] (16) _:':
= -1 v
(A] = [og) (K] (17) 3
) Substituting eqs. (8) - (17) back into (6) and (7) yields
ff

scat scat, , B
T 6d * scat t % ot (t") T .
- « ——— 4+ 0, « H . . — --J 5
] g + g, H + j K (t-t") P dt’ J (18)

aEscat aEscat<t,)

scat t e
o * E + Iwg(t-t') s ———— dt' = - J (19)

- L] +
e S at 2 at’ = e
- . . : . s
. These are the scattered field equations we will be treating. SNC
= -,
| ,
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" Method of Solution -
For now, we shall only concern ourselves with the 2D TM case. Thus, t;:
o E. Ey and Hz will be present. Equation (18) reduces to a scalar equation, bi
b - '-
but (19) remains a two-component vector equation. ot
-
- Figure 14 illustrates a typical TDFD 2D unit cell, and shows where the
§ three field components associated with that cell are located.
In Appendix 1, we will derive a technique for solving this equation -
;: system using first-order exponential differencing. The result of this -
' appendix is that, if we omit frequency dependence, HZ(I,J) is advanced A:
o according to :::
& -
-1 -1 % R
- TopAt -p oAt * . Ay
Hz(r, )™M - e HZ(I,LDH™ - (1 -e © Y (o) lsz(I,J)mhl/z (20) T
and [E(I,J)] is advanced according to .
; v
] a1y Tle) Tloolae n-1/2 -
(E(I,J)] =e [E(I,J)]
\..
a 1 o
-le] “loolat 1 .
- T n 3
- ([1I] - e Yloo] T(I7°(T,3)] (21)
- (The complication of frequency dependence will be considered later.)
-4
As we have said, [o0,] is permitted to be anisotropic. In the actual :iﬁ

code, it is represented by a total of five arrays:
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Figure 14. Location of field components in a
unit cell.
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This

SGX(I,J) 1is the bulk value characterizing the xx component of the

conductivity tensor at cell (I,J)

SGY(I,J) 1is the bulk value characterizing the yy component of the

conductivity tensor at cell (I,J)
SGXY(I,J) 1is the Lulk value characterizing the xy and yx components of
the conductivity tensor at cell (I,J) (gyrotropic materials are not

permitted in the present code)

SGCX(I,J) 1is the surface conductivity in the x direction on the y-

facing surface of cell (I,J)

SGCY(I,J) 1is the surface conductivity in the y direction of the x-
facing surface of cell (I,J)

Thus, the actual conductivity seen by Ex at cell (I,J) is given by

0o(1,J) = (SGX(I,J-1) + SGX(I,J))/2 + SGCX(I,J) (22)
00 (1,3) o = (SGXY(I,J-1) + SGXY(I,J))/2 (23)
ao(I,J)yx = (SGXY(I,J-I)-l + scxyu,J)'l)'l .2 (24)
00 (1,9),, = (SGY(I,3-1) % + sav(r, 5y H ™l . 2 (255

arrangement occurs because J‘ sees the xx and xy conductivities in

parallel, while Jy sees the yx and yy conductivities in series.

The conductivity matrix for Ey at cell (1,J) is analogously described

24
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-1 -1,.-1
ao(I,J)xx = (SGX(1-1,J) + SGX(I,J) ) .« 2 (26) ot
.. :_-;
- -1 . -1,-1
e ao(I,J)X = (SGXY(I-1,J) + SGXY(I,J) ) .« 2 (27) o
& 7 o
k.
? -
o ao(I,J)yX = (SGXY(I-1,J) + SGXY(I,J))/2 (28)
- ao(I,J)yy = (SGY(I-1,J) + SGY(I,J))/2 + SGCY(I,J) (29) -
) Note that, although the physical conductivity tensor is symmetric at :
&. each cell (SGXY(I,J) = SGYX(I,J)), the mathematical conductivity just 5;i
described is not symmetric (ao(I,J)xy # ao(I,J)yX). oo
The dielectric properties of the scatterer are represented by five ;::
- analogous arrays, EPX, EPY, EPXY, EPCX and EPCY. These are combined o
Il in the same way to form the mathematical permittivities em(I,J)ij at the Ex X
and Ey evaluation points of cell (I,J). ::
- Due to the anisotropic cross-terms, it is necessary to know Ey at the
Ex evaluation points. This is done by simple linear interpolation,
EY(I,J)x = (EY(I,J) + EY(I+1,J) + EY(I,J-1) + EY(I+1,J-1))/4 (30) i
. Ex at the Ey evaluation points, EX(I,J)y is obtained the same way. The .
3‘ matrix difference equation (21) is then solved twice at each cell and each i,
time step, once centered at and to advance EX(I,J), and once centered at and ::3
2 to advance EY(I,J). e
e o
P The following notation is also used: %
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-feg) toolat
QXX(I,J) 1is the (1, 1) component of e evaluated at the E

points

L1 Moolat
QXY(I,J) 1is the (1, 2) component of e evaluated at the E

points

le_1 Moolat
QYX(I,J) 1is the (2, 1) component of e evaluated at the E

points

le) M ogat

QYY(1,J) 1is the (2, 2) component of e evaluated at the Ey
points
-1
legl Tloglar
SXX(I,J), SXY(I,J), SYX(I,J) and SYY(I,J) are ([I] - e Y(oo]

(11)

how

correspondingly located and defined.
Additionally, if we refer back to egs. (15) - (17),

TAUXX(I,J), TAUXY(I,J), TAUYX(I,J) and TAUYY(I,J) are [Uo]-l[fm - €4
analogously located and defined, and
RXX(I,J), RXY(I,J), RYX(I,J) and RYY(I,J) are [aol'l[a0 - ab]

analogously located and defined.

It 1is mnecessary to evaluate both components of [ES] as given in eq.
at both Ex and Ey points in each cell. The above conventions indicate

to combine the o, and ¢ _ tensors for an inhomogeneous scatterer so this

. . . S
complete set of evaluations may be achieved. In particular, we denote EX

as ES evaluated at the E_ mesh point and ES as ES evaluated at the E_ mesh
y X yX X y

point.

Thus, Eix(I'J) is, from eq. (1l1l),




li (1 J) = - TAUXX(I, J)Elnc(I,J) - TAUXY(I, J)Elnc(I J)
o) - RXX(I, J)Elnc(I,J) - RXY(I, J)Elnc(I 7) (31)
s
”
- where lnc(I J) 1is the analytically specified ElnC field evaluated at E
. mesh points, and ElnC(I,J) is the analytlcally specified Ey ne fleld
i evaluated at Ex mesh points. Additionally, Eiy(I,J) is
" S inc
Eyy(I,J) = - TAUYY(I, J)E ©(1,J) - TAUYX(I, J)E (1,J)
ié
- RYY(I, J)Elnc(l Jy - RYX(I,J)E;QC(I,J) (32)
. where E;;C(I,J) is the analytically specified E;nc field evaluated at the Ey
mesh points and E yx (I J) is the analytlcally spec1f1ed Elnc field evaluated
at the Ex mesh points. Finally, E (I J) and E (I J) are, in analogy with
eq. (30),

S S S S S
Exy(I,J) = (Eyy(I,J) + Eyy(I+1,J) + Eyy(I,J-l) + Eyy(I+1,J-l))/4 (33)

ng(I,J) - (E L1,0) + E L(1,041) + E L(I-1,0) + E L(I-1,341)) /6 (34)

It is also necessary to evaluate both components of [JT] as given in
:E eq. (9) at both Ex and Ey points in each cell. Using the same convention as

above, we let JT be JT evaluated at the E_ points and JT be JT evaluated
Xy y x X X
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at the Ey points. Then equation (21), where [JT] is actually required, uses

[JT] in the form

(06) 1T = - (E%) + [00) M 194) - [o0) MV x HPO2F] (35)

We have already described how to find the [ES] contribution to [JT]. It is
easy to evaluate [ao]-l[Jf] because Jf is a prescribed analytic forcing term

which can readily be evaluated at either the Ex or the E_ points. The

scat
].

troublesome term 1is [V x H This will have both an x and a y com-

ponent, each of which must be evaluated at the Ex and the Ey points.

. at .
Let wus designate (V X ﬂsc )XK as the x-component of this term

evaluated at the Ex points;:

scat. HZ(I.,J) - HZ(1.,J-1)
= Xx Y(J) - Y(J-1) (36)

The y-component evaluated at an Ex point is

1| (HZ(I+1.,J) + HZ(T+1,J-1)) - (HZ(I.,J) + HZ(I,J-1))
2 2(X(1I+41) - X(1I))

o (BZ(IJ) + HZ(T1.,J-1)) - (HZ(T-1,J) + HZ(1-1,J-1)) (37)
2(X(1) - X(1-1))
The y component evaluated at an Ey point is
scat HZ(T.,J) - HZ2(T1-1.J)
VxR Dy =7 TTR@ - xTD (38)
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and the x component evaluated at an Ey point is

N =

(HZ(I1 . J+1) + HZ(1-1,J+1)) - (HZ(I.,J) + HZ2(I-1.J))
2(Y(J+1) - Y(I))

L HZ(TJ) + HZ(1-1.0)) - (HZ(I.J-1) - HZ(I-lLJ-l))]

2(Y(J) - YWJ-1)) (39)

Consequently, for example, eq. (21) for advancing EX(I,J) in all its

glory, becomes

EX(L,H™ 2 - que(r, yEx(r, ™2 4 QRY(I,0)EY(1,5)0 /2
(1 - QRX(T,INES (1,0 - QXY(I,J)Eiy(I,J)“

SXX(I,3) (1,95, - (v x B5°*H)7 )

SXY(I,9) (J (1,0 - (v x HE%25) 2 ) (40)

where QXX and QXY are defined after eq. (30), EY(I,J)x is defined by eq.
(30), Eix(I’J) is defined by eq. (31), Eiy(I,J) is defined by eq. (33), SXX

and SXY are defined after eq. (30), Jf(I,J)xx and Jf(I,J)xy are the forcing

currents, (V x ﬂscat)xx is defined by eq. (36), and (V x ﬂscat) is defined

by eq. (37).
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The scalar equations for advancing HZ(1,J), eq. (20), is much easier to
Ii implement than the matrix equation for advancing [E(I,J)]. We now need to
’ define
r.
k.
< XMUZ(I,J) as the bulk permeability at cell (1,J), By, of eq. (4),
! *
s SGMZ(I1,J) as the bulk magnetic conductivity at cell (I,J), o4 of eq.
4y,
- -1 \
QMZZ(1,J) = e-XMUL(I,J) SGMZ(1,J) At (41)
w SMZZ(1,J) = (1 - QMZZ(I,J))/SGMZ(1,J) (42)
*-1
TAUMZZ(1,J) = o, (”m - Bo) (43)
evaluated at the center of cell (I,J), and
Il *-1, * *
RMZZ(I,J) = go (oo - o) (44)
_ also evaluated at the center of cell (I,J)
The murderously complicated interpolations involved in advancing E do not
!. occur 1in advancing Hz partly because Hz is the only component of H present,
- and partly because Hz is evaluated at the center, not on an edge of the
~ cell.
S .
- From eq. (10), HZZ(I,J) is then
S “inc inc
) HZZ(I,J) = - TAUMZZ(I,J)Hzz (1,J) - RMZZ(I,J)HZz (1,3) (45)
“\
inc . . . s inc .
where H__ (I1,J) 1is the analytically specified HZ field evaluated at the
cell centers.
. .
i; One also need only evaluate JZT(I,J) of eq. (8) at the cell centers.
*
Equation (20), where JZT(I,J) actually appears, uses the form
E 30
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% -1 _%T S * -1.%
g (0) 79,7 (1,3) = - H_(1,3) + (00) Jp(1,3)_,
- + (o) T x Escat)zz (46)
x
= s *
s Here, we already have found HZZ(I,J), Jf(I,J)Zz is a prescribed magnetic
current density (which would be zero on any physically real problem), and
scat . .
(Vx E )zz is just
scat EY(I+1,J) - EY(1,J) EX(I,J+1) - EX(I,hJ)
(VXE Y= - 7))
2z Xo(I+1) - X (1) Yo (J+1) - Yo (J)
)
Thus, eq. (20) for advancing HZ(I,J) becomes
i HZ(1, )™ = Quzz(1,HHz(1,H™ + (1 - QMZZ(I,J))HiZ(I,J)n+1/2
::: A * n+l/2 scat,n+l/2
g Sb‘lZZ(I,J)(Jf(I,J)zz + (VX E )zz ) (48)
"
o
{\
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Introduction of Frequency Dependence

Let wus assume the frequency-dependent term in Eq. (19) has a kernel of

the form

2, (49)

where a. has the units of conductivity. This assumption is equivalent to
expanding the frequency-dependence of the material’s electrical properties
in a Prony series under the constraint that all the poles be on the real
axis. (Appendix 1 1indicates how one may relax the real-poles-only

constraint.)

Equation (19) then becomes

aEscat M
e —at + gy e Escat + } Em . i;cat _ . lT (50)
m=1
where
t R .
scat -ﬂmt t agsca (") ﬁmt
im (t) = e Im -—-EET‘*"— e dc’ (51)

In eq. (50), QT is still given by eq. (35), but with the understanding that

gs has the frequency-dependent term restored. In other words, gs is now

represented by eq. (11), not eqs. (31) and (32).

The i:cat of eq. (50) are not clearly identifiable either as conduction
or as displacement currents. We shall coin the name "Prony currents" for
them. Equation (50) for g;cat(t) is much easier to recognize if we dif-

ferentiate it once; its homogeneous solution is just a decaying exponential:
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ai:cat ceat Escat 7&;
R ot *Puln T ot 52)
ey hS
RS
>
N -~
f& In the 2D TM case, the components of eqs. (50) and (52) then comprise :{:‘
2(M+1) coupled first-order differential equations for gscat and i;cat. :
- Ideally, these equations should all be advanced from (n-1/2)At to (n+l/2)At e
simultancously each cycle. A technique for doing this is also described in _1
Appendix 1. -
. However, the present code actually implements a slightly less accurate .
N algorithm where Escat alone is advanced first in each cycle, and then the E
i;cat are advanced separately. Finally, a correction is made to the ad- Ai:
) vanced Escat to account for the effects of the J . i;~
. . R
e
:--
At this point, it is most imstructive to go back to eq. (7) and perform .
;i a rearrangement: }j
seat aEscat ceat aE1nc :
V xXH £, et 2o E + (e - leg) o 3t o
inc J't 9’ (£")
¥ (go - Io) + ETC 4 | K(e-t) o —5m— + I (53) ;
The inhomogeneous part of this equation can be written
;i;
.L-a
T P S P scat P AN
T 4 (971 = - Lol [ET) + [07) + [Jg] - [V x BX°%] + (07 (54)
where [ES] and [JP] are -
f;‘
S e i
(E°) = - [r](E""C) - (RI(EM"C) (55)
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EE are e oot R S el R

t
(9% = [ iree-e 18Ty aer (56)

with [r] and [R] still respectively given by eqs. (15) and (16).

Substituting eqs. (54)-(56) back into (53) then results in

scat
E scat T P

fw* Tar  t g BT - gy (57)

This equation is just (19) with the frequency-dependent term transferred to

the right and represented as JP. It is advanced according to eq. (21):

(E(1,3))"1/2 o

-1
-[ew] [oo]AL )
(1] - e " o) T,y + 3B, (s8)

The problem with direct application of this procedure is that we do not

, . . ssca .
know the portion of ip associated with ESC t at nAt until we have advanced
the Prony currents, and we cannot, strictly speaking, do that until we have

scat
advanced E .

As mentioned previously, the code does not presently utilize the proce- e

.'_]
dure described in Appendix 1 for simultaneous advancement of Escat and <.
at : : . . s : .
J;C . Rather, we first find an intermediate value of E cat obtained with

effects of the Prony currents omitted:

(BT, e (E(1,3))™ /2 R
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SPRICAIN:

S (1) - e )oo] ™t

(3T¢r,0y)" (59)

The procedure for obtaining this intermediate value is identical to the
procedure described in the previous section for advancement through a total
cycle in the absence of frequency-dependent effects. 1Its implementation in

the code is also identical to what was described in the previous section.

P
Let wus next turn to the advancement of the total Prony current J as

given by eqs. (49) and (56):

M
JF - }a . gF (60)
=m “m
m=1
where
Bt ot BET(t') Bt
T 3
;m<c)=emImTemdt' (61)

Equation (61), like (51), is made more recognizable by differentiating with

respect to time:

al; T 8§T B(Elnc + Escat)
ac t Pudm = 3c T at (62)

The equation for exponential-difference advancement of this result is

JT(I,J)n+1/2 —e m
<o

-
S 2% et ot at
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At

-ﬂ At . i L]
g L -e TO)E™ A, + BT a8, (63)
o The incident field Elnc is a specified analytic function. At present, the
T code evaluates Escat(I,J)n as
o
:_\
- ceeme o E@OTE L E@,nH?
T E (1,J) = (64)

Equations (63) and (64) may be combined to give an expression for
JT(I J)n+1/2

o -m

e as

. . . P
in terms of known quantities. We can then determine J (I,J)n

M
AN = ) (a,LDIILE)

ll m=1

n+l/2 n-1/2

+ Ji(I,J) 1/2 (65)

Subtraction of eq. (59) from eq. (58) then permits us to advance

[E(I,J)] from 1its intermediate wvalue to its value at the new time step,

o (n+1/2)At:

Y (E(1,0))™ 2 - (5(1,9))i0t

e ) Moolat

S (1] - e O

]Il

ko (66)

Frequency dependence in the magnetic properties of the material can be

treated in an exactly dual manner to what we have just described for the

a electrical properties.
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At present, we have not coded up magnetic frequency dependence, nor

E have we combined frequency dependence with off-diagonal type anisotropy.
) Both these generalizations would be perfectly obvious extensiouns of what has
- been done, but we cannot conceive a cannonical problem we could check the
- results against.
-~
" Not mixing off-diagonal anisotropy and frequency dependence means we

only treat diagonal a  tensors. If eq. (65) is substituted in eq. (66), we

obtain

-1
. -le 1 T{oglat
+1/2 int 0
(E(1,)1™ 2~ B, - ) s e 7 )
r
i
. } (SA (I,D119%x,0)™1/2 4 3T, 5y /2, (67)
m m m
m=1
where
-1

- [SA (1,3)]) = [00(1,3)) (A (I,9)] (68)

In the actual code, two arrays are used to describe the material ef-
. . -1
fects of each term in the Preny series. Let ao(I,J),’N represent the xx

element of the inverse of the matrix described by eqs. (22)-(25) at cell

(1,J). Let ao(I,J);; similarly represent the yy element of the inverse of
the matrix described by eqs. (26)-(29) at cell (I,J).

Moreover, let AAMX(I,J) represent the =xx element of the mth Prony 7},
T tensor of the bulk material at cell (I,J), and let AAMY(1,J) represent the

corresponding yy element. Then the xx element of [SAm(I,J)] which actually

K relates the x component of i;(I,J) to the x component of E(I,J) is called

¥

e

* o - - . - - . . . . N - . N
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SAMX(I,J) = o04(I, J) (AAMX(I J-1) + AAMX(I,J))/2 (69)

Similarly, the yy element of [SA (I,J)] which actually relates the y com-
ponent J (I J) to the y component of E(I,J) is called

SAMY(I,J) = 00(1,J>;; (AAMY(I-1,J) + AAMY(I,J))/2 (70)

In keeping with our simplification of not mixing off-diagonal anisotropy
with frequency dependence, we 1ignore any possible off-diagonal nonzero

values in [SAm(I,J)].

It turns out that only SAMX(I,J) and SAMY(I,J) need actually be stored.
That 1is, it 1is mnot necessary to assign arrays for keeping UO(I,J);i,

aO(I,J);;, AAMX(1,J) and AAMY(I,J).

Consequently, the actual equation used in the code for implementing the

x-component of the Prony correction is

EX(1,0)™ /2 _ gx(r gyint
M
- (1 - QXX(I,JI)) } SAMX(I,J) XJIMSX(I,J)" (71)
m=1
where
XIMX(1,7)" [J (1, J)”*l/z + g7 Tk /2y /5 (72)
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Similarly, the actual equation used for implementing the y-component of the

D Prony correction is

- n+l/2

- EY(I,J) int

= EY(1,J)

M
- (1 - QYY(I,J)) } SAMY(I,J) XIMY(I,I)" (73)
-1

where

n+l/2
y

n-1/2

y 1/2 (74)

n T T
XIMY(I,J) = [Jm(I,J) + Jm(I,J)

.
A

T

39

. ) o e e .

o m e e e e e e e e e e S T e e e T e U e e e e
B T S Ny oy S I . - et

A e e T e e e e e e e ot AR . RS . -

RININI TR W




AR S04 2 AR P SN AL N R gL et Rl SN RN L s A Rr A i - e i A A e e A ot N A SO et ouil S e

3. A

.f
3 i
~ Ry
*. S
-~
Transformation from the Near-field Time Domain to the N,
'_ Far-field Frequency Domain o
o .
it
ey
= e
. The foregoing work described the determination of the scatterer’'s }'q
- electromagnetic response and associated near fields. We are actually inter-
. ested in the RCS, which is a far-field quantity. Now we shall describe how -
the code extracts the RCS from the near-field results. In this process, we
o also transform from time domain to frequency domain.
- -
- Any electromagnetic field can be expressed in terms of an electric and Soe

* .
a magnetic vector potential, A and A . These vector potentials (in the

frequency domain) obey the inhomogeneous wave equations. S

V2 + k%A = -pold (75) o

Il * * * ;
. VZAT + k%A = €0l (76)
)
s XS
- * N
Here J is the fictitious magnetic current density often found useful in T
- manipulating Maxwell’s equations. Equations (75) and (76) can be general- .
e ized to apply to any linear medium, although we shall find their free-space .3“;
. form adequate for our uses. -
i In 2D, we define the far field to be the region where all fields drop
off as r-l/z; i.e., where all the faster falling terms have vanished. We i
can then separate the electric and magnetic fields into two parts,
" <>
t
E=-E +E (77)
. e “m T
o, .
o S
-f H=H +H (78) ..':.‘
e m

40




-

)

vy
P

€2 ¢
R

B ai sy a2 ausee —r

The e-subscripted parts are associated with the electric vector potential A,
and the m-subscripted parts are associated with the magnetic vector poten-
* . .
tial A . In particular, if we call Y, and Z, the admittance and impedance

of free space, we can show in the far field that

Hy = V X A/io = iwYoi_ X A (79)
E =V x A e, = iwZgi X A" (80)
-m r

B, - fwA, - lo(ih, + 1,A,) (81)
H, = - oAy = - lo(LAy + 1,A)) (82)

flere, a t subscript indicates that only the transverse components (¢ and z)
are retained. Equations (79)-(82) are analogous to 3D formulas, and depend

on the fact that

ei(kr-wt) o
— (83) S
Jr ;Q
is a valid far-field frequency-domain 2D solution of the wave equation even !F!
R
if the more general R

f(t - r/c (84)

Jr

is not a valid time-domain solution. These equations tell us that if we can

*
evaluate A and A , we can find the 2D RCS without undue complication.
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In two dimensions, the Green's function for the scalar wave equation 3
u_ in the frequency domain obeys P T
[N ‘\‘.-
\-'.
[ h'
N A
e i
h V2G(z|r') + k?G(x|r') = &(x-xr") (85)
y e -
. -
p where r 1is the scatterer location and r' is the observer location. This A
o equation has solution -
\‘- - -
b . :'
b i (1 -
- czir) = - P awm) (86)
3 4o -
A 3 .~.
]

*
Thus, at least in cartesian coordinates, A and A become

) 1D (k)

] AL ,©) = J —ap L(x,e)dr (87) ~
: * iHél) (kR) E:t::

. ATz W) = - H oo L (s (88) n
} :' ':_:

!

{ For the far field region, G(x|r') asymptotically approaches iﬂ

a -i3n/4 .

. e 2 ikR
. elxle”) i VmR © (89) \
< "
This expression may be further manipulated by letting r‘ replace R in the
- denominator of the radical. The phase term requires a bit more care:

e,

KR + k(r’ - i’ » 1) = kr’' - (kx cosg’ + ky sing’) (90) el
= w
N >
b 42 N




A

'.A."u"

[“, LA

where

i, = icos$’ + iy sing’ (91)

is a unit vector pointing from the target to a far-field observer.

Using these expansions, we can rewrite the formula for A in the far
field as

-3in/4
) Ko® /2 ikr’ IIJ(L,w)e-ik<x cos¢’ +y Sin¢)d§ (92)

4 Vogke! ©

%
A corresponding expression exists for A (r',w). The far-field expression

for E then becomes

E (r',0) = iw At(z',w) =
. -3in/4
el 2 ike' -ik(X cosd’' + y sing’
- — VA [ (reyeriRx cosst iy sindtyy (g5

Similarly, ﬂm becomes

. WK%, _
ﬂrn(_r. ,(l)) = lw.ét(z ,U)) -
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. -3in/4 —_
tweo® 2 ikr’ JI J*(r w)e—ik(x cosg’ +y sing’) (94)
4 nkr’ SelE =

Analogous formulas exist for E and H .
“m e

Equations (93) and (94) are not directly applicable to the output of
our 2D Maxwell solver as these equations demand the frequency-domain J and

QW, while the Maxwell solver outputs the time-domain currents.

Let us say we want Ee(g',wq) where wq is one of Nq discrete frequencies

of interest. We can then write

jw t ik' « x
I:e T ac Jf J (x,t)e 1 dr (95)

where ké is the wavenumber pointing towards the observer at wq and where we
have interchanged the order of time and space integration after replacing

Qt(;,w) with its inverse Fourier representation.

Analogously, ﬂm(g',wq) becomes

-3in/4

iwqeoe 2 iqu’
ﬂm(L ’wq) = 8x ﬂkér' € '

IR
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J-:ejwqt ac Jf Jt(g,t)e-iké " (96)

Equations (95) and (96), and the two companion equations for Em and Ee
are in a form which 1is compatible with our time-domain Maxwell solver.
Taking the time integration outside the space integration is vitally impor-
tavt to the efficiency of our algorithm. Were this not done, it(g,t) and

i;(g,t) would have to be Fourier transformed at every point before being
integrated over space. The form of egqs. (95) and (96) replaces this enor-
mous computation with a single Fourier transform on the result of the space
integral.

If we let iscat represent the total current (conduction, displacement

and Prony) associated with the scattered electromagnetic field (see eq.

(53))

scat - scat -
= ¢ —_— .

aET (t7)

. t
+ (go - Loy) « ETNC 4 Iwg(t-t') -~ 4t (97)

. . scat
and 1if we substitute J a

] scat . ; . .
scattered field E of the first section unless magnetic materials are

. scat .
present. That is, it ¢ integrated over the scatterer cross-section accord-

ing to eq. (95) gives Escat in the absence of magnetic materials.

for lt in eq. (95), E

o of eq. (95) becomes the

RCS(wq) - 2n : (98)

*
In this convention, A and gm are zero.
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However, it 1is possible to replace the area integral of egs. (95) and

(96) with a contour integral by means of Huygens principle. In particular,

let S be a closed contour which completely surrounds the target. (For
instance, let S be a rectangle defined by x = x,,x, and y = y,,y,.) Let
Escat and ﬂscat be the scattered fields which our Maxwell solver predicts

will exist on S due to the time-domain illumination. Let n be an outward-
pointing wunit normal on S. If we then remove the scatterers and its

currents, but let an electric surface current

K = n x g52¢ (99)

K~ = - nx g5°2t (100)

flow on S, the scattered electromagnetic field will be replicated outside §.

This means the area integral of eq. (95) may be replaced by

scat

! I
4 TP pg =1
q

(£) ¢ (101)

where the summation over p represents integration over the finite difference
cell edges which 1lie on §. This summation is represented by I because it

has the dimension of amperes. In the actual code, it goes by the name
XIEST
q

Analogously, the area integral present in eq. (96) for ﬂm(g,wq) can be

written
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)] n x E°°%%(x T SV 15985 ()% (102)
1 P “q t

(Remember the t subscript on I, I*, or anything else implies evaluation with

- the r component omitted.) 1In the code, this variable is called XIMST

scat .
is as-

scat

H
E in eq.

sociated with the ¢-component of Ee(g’,wq). The ¢-component of
(102) has the same association, as the cross with ir in eq. (80) proves.

»

]

)

)

y

)

} Equations (95) and (101) indicate the =z-component of
{ These scattered fields are the TM solution.

Analogously, the ¢-component of ﬂscat in eq. (101) and the z-component

G; of Escat in eq. (102) relate to the (decoupled) TE solution, which we are

not treating in detail at this time.

at
lSC

n .
Let us use (t)t to denote this "current" evaluated from the

*
5 finite-difference code at nAt. Let us analogously denote l:cat(t)tn+1/2.
. As the finite-difference calculation progresses, we can then keep running

summations for each frequency O

» Qso::at:(t)n - jwqut
. q ¢

n scat m
2 1 )" e

I At (103)
m=1 1 t

j +1/2)4t
scat(t)*n+1/2 _ g Iscat(t)*m“"l/2 erq(m /2)

Q 1
q t m=1 q t

At (104)

When the time-domain finite difference calculation is complete, these Q’'s
will then respectively contain quantities which are directly proportional to
v the electric and magnetic contribution to the RCS at w_. Note that it is
. only necessary to backstore 2Nq complex quantities during the time-domain

finite-difference calculation in order to preserve all the information

%,
E; necessary to generate a monostatic RCS as a function of w.




The symbol Q is used in eq. (103) because it represents a quantity with

<5

units of coulombs. In the code, it is written SIESTq. The scattered -:
h . electric field associated with Q:cat(t)t is S:
IS r
) ’ scat i("cx“"e-3lw/4 2 iqu' scat,
- _E_e (_r_ qu) = = 8x ﬁqul e Qq (w)t (105) :::
The code tracks the ¢-component of this quantity as EPESq, when J/r' is -
P -
¢ . normalized out. Analogously, the scattered magnetic field associated with
s scat * . L
u-. Qq (t)t 1s _t:
P s
. .
ﬁ ¥
’ scat,_, i €°e-3lﬂ/4 2 iqu' scat, (%
ﬁm (.!. ;wq) = 8r Trqul e _Qq (m)t (106)
In the code, the z-component of this quantity is HZMS when Jr’' is normal- -
ized out. The scattered electric field associated with the magnetic current -
is obtained by combining eqs. (80) and (106), -
!I .
scat iwqe-:‘}lﬂ/a 2 iqu' ! scat, %o 5
o Em - ’wq) - 8xc nqu' € X Qq (=) (107) i
In the code, the ¢-component of this quantity, less the Jr' factor, is f
EPMS -
q i
) The radar cross section then becomes
2 -
(L2 (' o) + E°25(x! 0 )/ ~.;:
RCS(w ) = 2=x : (108) .
d E(x',w,) X
q
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n In the code, SCATXE’.q is the E:cat contribution to the ratio inside the

o) absolute value signs, and SCATXMq is the E:cat contributions. -
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APPENDIX 1. SOLUTION OF THE TENSOR WAVE EQUATION

Let us consider the case where anisotropy, but not frequency depend-

ence, is present,

[e,] DIE] + [0o][E] = [J] (A1)

This matrix differential equation has a homogeneous solution

[Ely = e (Al (A2)

and a particular solution

(E), = [06) (I (A3)

giving a general solution

1 Moot

(A] + [00] [J] (AG)

The constant vector [A] may be evaluated at (n - 1/2)At:

n-1/2 n

(E] — [(A] + [0 (d] (AS)

This gives the new E-field vector in terms of the old,

50
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